Water Treatment Fundamentals
Order of Operations

• Please Excuse My Dear Aunt Sally

• Parenthesis, Exponents, Multiply, Divide, Add, Subtract (PEMDAS)
Converting Units

1mg = 1,000µg

Example: The Action Level for lead is 0.015mg/L. What is this in µg/L?

\[
\frac{0.015 \text{ mg}}{1 \text{ L}} \times \frac{1,000 \mu \text{g}}{1 \text{ mg}} = 15 \mu \text{g/L}
\]

mg/L (or ppm) → µg/L (or ppb) Move the decimal to the RIGHT 3 places

µg/L (or ppb) → mg/L (or ppm) Move the decimal to the LEFT 3 places
Softener Sizing Calculations

MEP Fundamentals Module
B4-F-Water Treatment System Operations Badge
Learning Activity #5
My Learning Path > C2 > B4 > LA-F5

- 2 Knowledge Base articles
- 3 customer examples
Softener sizing calculations (MEP)

What information do I need?
1. Total hardness (including iron)
2. Number of people in the household or water usage
3. Exchange capacities
Calculate total hardness

- 17 gpg hardness
- 1ppm Iron

\[1 \text{ ppm Fe} \times \text{ ?} = \text{ ? mg Fe} \]

Total hardness =
Grains removed per day

Total Hardness x Daily Water Usage
Daily Water Usage = (3 people)(70 gallons/day)

\[
\frac{20 \text{ grains}}{\text{gallon}} \times \frac{? \text{ gallons}}{\text{day}} = ? \text{ grains/day}
\]
Exchange capacities

Choose the amount of resin that can handle the calculated grains of hardness for the desired level of salt.

<table>
<thead>
<tr>
<th>Resin Volume (ft³)</th>
<th>Saltion Capacities Per (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 lbs.</td>
</tr>
<tr>
<td>1.0</td>
<td>20,000</td>
</tr>
<tr>
<td>1.5</td>
<td>30,000</td>
</tr>
<tr>
<td>2.0</td>
<td>40,000</td>
</tr>
<tr>
<td>2.5</td>
<td>50,000</td>
</tr>
<tr>
<td>3.0</td>
<td>60,000</td>
</tr>
</tbody>
</table>
Processed water volume

\[
\frac{\text{resin capacity (grains)}}{\text{total hardness (grains/gallon)}}
\]

\[
\frac{20,000 \text{ grains}}{20 \text{ (grains/gallon)}}
\]

1,000 gallons
Processed water volume w/ reserve

- 30% reserve capacity
 - \((20,000 \text{ grains capacity})(0.30) = 6,000 \text{ grains}\)

\[
\text{original resin capacity} - 30\% \text{ reserve capacity} = \frac{20,000 \text{ grains} - 6,000 \text{ grains}}{20 \text{ grains/gallon}}
\]

700 gallons
Service run length with reserve

\[
\frac{\text{processed water volume with reserve}}{\text{daily water usage}}
\]

\[
\frac{700 \text{ gallons}}{210 \text{ gallons/day}}
\]

3.33 days

Note: to prevent hardness breakthrough, round down to regenerate every 3 days.
Cycles per month:

$$\frac{30 \text{ days}}{\text{month}} \div \frac{3 \text{ days}}{\text{cycle}} = 10 \text{ cycles/month}$$

Salt per month:

$$\left(\frac{10 \text{ cycles}}{\text{month}} \right) \left(\frac{6 \text{ lbs NaCl}}{\text{cycle}} \right) = \frac{60 \text{ lbs NaCl}}{\text{month}}$$
% Rejection Calculations

MEP Fundamentals Module
B4-F-Water Treatment System Operations Badge
Learning Activity #8
% Rejection

What information do I need?
1. Influent concentration of specific contaminant
2. Influent TDS
3. RO % rejection rating of specified contaminant
Concentration in Permeate

Example:

- Feed-water Arsenic concentration: **10.0 ppm**
- RO rejection rating for As: **96%**
- How much As is in the permeate as a %? **4%**

\[
10 \text{ ppm} \times 0.04 = \text{ As in permeate}
\]
Pretreatment needs?

- **Chlorine.** Chlorine is a problem because it can degrade the polyamide thin film composite RO membrane, which is the most common membrane used in residential applications. A carbon pre-filter is typically used to remove chlorine.

- **Iron.** Iron can clog the membrane by precipitating on it. If dissolved iron exceeds 0.3 mg/L, reduction of the iron concentration is required.

- **Organic contaminants.** Organic contaminants such as VOCs may be too small to be removed by the RO membrane. Such contaminants can be removed by a carbon pre-filter, but their presence can require more frequent filter changes.

- **Hard water.** Hard water can cause scale on the membrane. Hardness ions must be removed or reduced in concentration prior to the RO.
Differential pressure

• Influent pressure
 • Most households are typically 60psi

• Osmotic pressure
 • Depends on the total dissolved solids in the feed water

• Back pressure
 • The back pressure from the pre-charge on the tank.
 • Typically, pressure is set between 5 and 10 psi.
Osmotic pressure

The reverse osmosis process has to overcome osmotic pressure to operate.

• Every 100ppm TDS is 1psi of osmotic pressure*

• Example: 150 ppm TDS

\[
(150 \text{ ppm TDS}) \frac{1 \text{ psi}}{100 \text{ ppm TDS}} = 1.5 \text{ psi}
\]

*This estimate is not an exact value for all possible combinations of water constituents, it is sufficient for calculations of performance.
Differential pressure

Feed-water pressure – (osmotic + back pressure)

Example:

60psi – (1.5psi + 8psi) = 50.5psi

Mfr. min. operating pressure is 40psi, do we need a booster pump? No.

When the differential pressure is below the minimum manufacturers operating pressure, then a booster pump is recommended.
Sizing A Filter

MEP Fundamentals Module
Learning Activity #11
Example: Customer #1

• Building demand (calculated by fixture count) = 10gpm

\[
\frac{5 \text{ gallons}}{40 \text{ seconds}} \times \frac{60 \text{ seconds}}{1 \text{ minute}} = 7.5 \text{ gpm}
\]

• Backwash flow available = 7.5gpm
Example 1:

<table>
<thead>
<tr>
<th>Model No</th>
<th>Service Flow GPM</th>
<th>Backwash Flow GPM</th>
<th>Media Cubic Feet</th>
<th>Drain Pipe Size</th>
<th>Inlet/Outlet Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-10</td>
<td>5.0</td>
<td>3.2</td>
<td>1.5</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>AC-13</td>
<td>7.0</td>
<td>4.2</td>
<td>2.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>AC-1665</td>
<td>10.0</td>
<td>5.3</td>
<td>4.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>AN-10</td>
<td>5.0</td>
<td>5.3</td>
<td>1.5</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>AN-13</td>
<td>7.0</td>
<td>7.5</td>
<td>2.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>AN-1665</td>
<td>10.0</td>
<td>10.0</td>
<td>4.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>FE-10</td>
<td>5.0</td>
<td>5.3</td>
<td>1.5</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>FE-13</td>
<td>7.0</td>
<td>6.5</td>
<td>2.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>FE-1665</td>
<td>10.0</td>
<td>10.0</td>
<td>4.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>MM-10</td>
<td>6.0</td>
<td>6.5</td>
<td>1.5</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>MM-13</td>
<td>8.0</td>
<td>10.0</td>
<td>2.0</td>
<td>3/4"</td>
<td>1"</td>
</tr>
<tr>
<td>MM-1665</td>
<td>10.0</td>
<td>15.0</td>
<td>4.0</td>
<td>1"</td>
<td>1"</td>
</tr>
</tbody>
</table>
POE System Sizing

MEP Fundamentals Module
Learning Activity #15
Service flow rate

1. Count the total* number of water supply fixture units (WSFU’s) using:
 a. Table A (in WQA Knowledge Base)
 b. WSFU worksheet

2. Convert the WSFU’s to gpm = service flow rate
Example – Step 1

*Note: **Total** WSFU’s is not found by adding the hot & cold WSFU’s, it’s the values from the Total column in Table A.

<table>
<thead>
<tr>
<th>Type of fixture or group</th>
<th>Number of fixtures or groups</th>
<th>Hot water (WSFU)</th>
<th>Cold water (WSFU)</th>
<th>Total (WSFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp: Shower, lav, water closet - flush tank</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Lavatory</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Water closet, flush tank</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Kitchen sink</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Clothes washer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Total WSFUs</td>
<td></td>
<td>7.5</td>
<td>11.5</td>
<td>15</td>
</tr>
<tr>
<td>Converted to flow rate (might require interpolation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Sizing Scenario

As a sales person you need to select a point of entry (POE) water ion exchange softening system for a customer’s home. The home has two full baths with showers, one half bath, a kitchen sink, a dishwasher, and a clothes washer. All water closets are flush tank type.
The relationship between WSFU’s and gpm is not linear and, therefore, requires interpolation.
WSFU to gpm interpolation

Table C: Conversion of WSFU’s to gpm

Total WSFU’s = 15

Look below & above the actual WSFU of 15; which is 10 @ 8gpm & 20 @ 14gpm

\[
\text{(actual WSFU} - \text{WSFU below}) \times \frac{(\text{flow above} - \text{flow below})}{(\text{WSFU above} - \text{WSFU below})} = \text{ gpm}
\]

\[
(15 - 10 \text{ WSFU}) \times \frac{(14 - 8 \text{ gpm})}{(20 - 10 \text{ WSFU})} = 3 \text{ gpm}
\]

8 gpm + 3 gpm = 11 gpm
Example – Step 1

System Sizing Scenario

As a sales person you need to select a point of entry (POE) water ion exchange softening system for a customer’s home. The home has two full baths with showers, one half bath, a kitchen sink, a dishwasher, and a clothes washer. All water closets are flush tank type.

<table>
<thead>
<tr>
<th>Type of fixture or group</th>
<th>Number of fixtures or groups</th>
<th>Hot water (WSFU)</th>
<th>Cold water (WSFU)</th>
<th>Total (WSFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp: Shower, lav, water closet - flush tank</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Lavatory</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Water closet, flush tank</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Kitchen sink</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Clothes washer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Total WSFUs</td>
<td></td>
<td>7.5</td>
<td>11.5</td>
<td>15</td>
</tr>
</tbody>
</table>

** Converted to flow rate (might require interpolation)**

| | 6.25gpm | 8.90gpm | **11.00gpm** |
Sample Control Valve Specifications – 1”

XY 1.0 VALVE SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>XY1.0-24</th>
<th>XY1.0-32</th>
<th>XY1.0-32-10</th>
<th>XY1.0-48</th>
<th>XY1.0-64</th>
<th>XY1.0-96</th>
<th>XY1.0-128</th>
<th>XY1.0-160</th>
<th>XY1.0-192</th>
<th>XY1.0-032RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backwash; Min</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Brine: Min.</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>Fast Rinse; Min</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Refill-Minutes

- Low Salting

<table>
<thead>
<tr>
<th></th>
<th>3.0</th>
<th>4.0</th>
<th>4.0</th>
<th>6.0</th>
<th>8.0</th>
<th>12.0</th>
<th>16.0</th>
<th>20.0</th>
<th>24.0</th>
<th>4.0</th>
</tr>
</thead>
</table>

- Medium Salting

<table>
<thead>
<tr>
<th></th>
<th>5.0</th>
<th>6.7</th>
<th>6.7</th>
<th>10.0</th>
<th>13.5</th>
<th>20.0</th>
<th>27.0</th>
<th>33.5</th>
<th>40.0</th>
<th>6.7</th>
</tr>
</thead>
</table>

- High Salting

<table>
<thead>
<tr>
<th></th>
<th>7.5</th>
<th>10.0</th>
<th>10.0</th>
<th>15.0</th>
<th>20.0</th>
<th>30.0</th>
<th>40.0</th>
<th>50.0</th>
<th>60.0</th>
<th>10.0</th>
</tr>
</thead>
</table>

Refill-Lbs of Salt

- Low Salting

<table>
<thead>
<tr>
<th></th>
<th>4.5</th>
<th>6.0</th>
<th>6.0</th>
<th>9.0</th>
<th>12.0</th>
<th>18.0</th>
<th>24.0</th>
<th>30.0</th>
<th>36.0</th>
<th>6.0</th>
</tr>
</thead>
</table>

- Medium Salting

<table>
<thead>
<tr>
<th></th>
<th>7.5</th>
<th>10.0</th>
<th>10.0</th>
<th>15.0</th>
<th>20.0</th>
<th>30.0</th>
<th>40.0</th>
<th>50.0</th>
<th>60.0</th>
<th>10.0</th>
</tr>
</thead>
</table>

- High Salting

<table>
<thead>
<tr>
<th></th>
<th>11.5</th>
<th>15.0</th>
<th>15.0</th>
<th>22.5</th>
<th>30.0</th>
<th>45.0</th>
<th>60.0</th>
<th>75.0</th>
<th>90.0</th>
<th>15.0</th>
</tr>
</thead>
</table>

Capacity Grains

- Low Salting

<table>
<thead>
<tr>
<th></th>
<th>17,200</th>
<th>22,930</th>
<th>22,930</th>
<th>34,400</th>
<th>45,870</th>
<th>68,810</th>
<th>91,750</th>
<th>114,690</th>
<th>137,620</th>
<th>20,192</th>
</tr>
</thead>
</table>

- Medium Salting

<table>
<thead>
<tr>
<th></th>
<th>21,040</th>
<th>28,080</th>
<th>28,080</th>
<th>42,090</th>
<th>56,120</th>
<th>84,180</th>
<th>112,240</th>
<th>140,300</th>
<th>168,360</th>
<th>29,978</th>
</tr>
</thead>
</table>

- High Salting

<table>
<thead>
<tr>
<th></th>
<th>24,230</th>
<th>32,310</th>
<th>32,310</th>
<th>48,460</th>
<th>64,620</th>
<th>96,930</th>
<th>129,240</th>
<th>161,550</th>
<th>193,860</th>
<th>34,871</th>
</tr>
</thead>
</table>

Water Usage (U.S. Gallons)

At Factory Settings and 40 psi inlet pressure, includes water for brine make-up.

- **32.1**
- **30.2**
- **45.2**
- **49.8**
- **95.2**
- **101.3**
- **139.6**
- **185.0**
- **217.6**
- **45.2**

Service Flow Rate;

<table>
<thead>
<tr>
<th>Flow Rate @ 10 psi</th>
<th>9.8</th>
<th>10.1</th>
<th>11.3</th>
<th>10.5</th>
<th>14.2</th>
<th>14.4</th>
<th>15.1</th>
<th>17.3</th>
<th>17.8</th>
<th>10.4</th>
</tr>
</thead>
</table>

Peak Flow Rate @ 15 psi	13.1	13.0	14.5	14.1	18.2	19.2	20.1	22.7	23.1	12.8
Resin; Cu Ft.	0.75	1	1	1.5	2	3	4	5	6	1.0
Mineral Tank	8x44	9x48	10x48	10x54	13x54	14x65	16x65	18x65	20x62	10x54
Brine Tank	18x40	18x40	18x40	18x40	18x40	24x41	24x41	24x50	24x50	18x40
Drain Line Flow Control	1.3	1.7	2.2	2.2	4.2	4.2	5.3	7.5	7.5	2.2
Brine Line Flow Control	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Questions?

Thank you!